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Formal management of change

Specification

Changing specification ]
due to proof failures Translation to a
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Formal Developments as
Structured Objects

Axioms, Logic, Calculus

05.buck = tbucks.bckobjects and 05.buck' = tbucks.bckautomaton and
(EX o5.newvalue : (05.command = tterminal.ifddomodify(tobjectids.obj5,
o5.newvalue)

ICC Function

taccessrights.allowed(tobjectids.obj5, 05.state, taccessrights.armodify)
-> (05.value‘ = tmaybe{tinformation.information}.def (05.newvalue) and
o5.valueout' = tcard.answermodified))

Automaton I

Sec. Channell

( not taccessrights.allowed(tobjectids.obj5, 05.state, taccessrights.armodify)
-> (o5.value = o5.value and o5.valueout' = tcard.answerdenied)))

05.buck = tbucks.bckobjects and 05.buck' = tbucks.bckautomaton
and o5.command = tterminal.ifddoread(tobjectids.obj5) oudjed Transmon
and ( taccessrights.allowed(tobjectids.obj5, o5.state, taccessrights.arread)
-> o5.valueout' = o5.value)
and ( not taccessrights.allowed(tobjectids.obj5, o5.state, taccessrights.arread)
-> o5.valueout' = tcard.answerdenied) AccessRights States Event I

and o5.value = o5.value'))_{(o5.value, o5.valueout, o5.buck)}

05.buck = tbucks.bckobjects and 05.buck’ = tbucks.bckautomaton H Card I Terminal I Cert I | Signature I

and (EX o5.i, 05, :
( o5.command = tterminal.ifddoverify(o5.i, 05.j)
and ( taccessrights.allowed(tobjectids.obj5, o5.state, taccessrights.aruse)
-> (o5.valueout' = tcard.answersuccess
or o5.valueout' = tcard.answerfailure)) ...

Information

Signature

morphisms
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Verification of Properties

- Types of ,properties”:
- Structured properties: decomposition

- Elementary properties:
formal or ,informal® proof

- Decomposition und composition:

- Properties are decomposed according to the structure
of the doucments

- Reuse of properties of unchanged objects
- Synthesis of properties for changed or new objects
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File Edit Hule Apps Options Bu Help
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E% ; _._!ik_iﬁ!., ;
bpec natlist = spec ptack = Z
{ { :
generated type nat ::= null | siprnat); sort elem:
var x,vy,z:nat; I3
o * : mat ¥ mat -® mat, comm, asscc, unit s (rmll) :
ol tix:nat; y:nat):nat = then
v when x = nuall
else si+lplx), ¥l); {
generated type stack ::= empty _stack
axiom +(x,w) = +iv,x); | pushitocprelem; pop:stack]:
axicm +(x,+(v.=)) = +{+ix.v) . 2);:
} cir poprecie:relem; g:stack] istack =
enpty stack when s = empty_stack
then elee popisl when & = toplsl

elpe pokrecie, poplell:
{ b
generated type natlist ::= nil

| ccnelfet:nat: reet:natliet):

var 11,1Z:natliet; - |
var nl,nz:nat:

of app : natlist * matliet -= natlist, asscec. unit nil:

axicm appleconsind,11) ,12) = cons(nl, ape(ll.120);
view wiewlt : stack to natlist =

cp addlast (m:nat:; l:natliet):natlist = gorts elem |-> nat,

cong (n,nil) when 1 = nil stack |-» natlist,

elee conslfet(l), addlastin,rest(1)));: cpe poprec:elem * gtack -=stack |-» delete_until,

enpty_stack:stack | -= nil,

op delete_until(n:nat; l:natlist):natlist = top: stack -& elem | -= fst,

nil when 1 = nil pop: etack -= stack | -= rest,

else rest(l) when n = fetil) rush:elem % stack -> stack | -= ccns

else delete_untilin, rest(1)): e
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Decompositions by
,<theory" prover

Decomposition by
theorem prover
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Example: Development Graphs

Logic based representation of
structured formal developments

Specifications and implementations
as theories (consequence relations)

Formal relations between parts of
developments (morphisms)

supports different formalisms
(logics) to represent different parts

Now used
to define proof theory of CASL
to specify structuring in OMDoc
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Verification in the large

Verification in the small

uonisodwoda(
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Structured objects:

- E.g. theories, formulas, terms, signature

- E.g. document, chapter, section, paragraph
- Acyclic graphs as object representation

Structured properties between objects:
- E.g. satisfiesq, satisfies,,qy, , satisfies,

Decomposition rules along object structure
- E.g. satisfiesy, by using satisfies,,y,, for all subtheories

Calculi to prove properties on various levels

Rules to adapt inference steps in case of changes
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| Development

- Distributed development
- Update of local developments
- Merge of different branches
- Notion of conflicting developments
= Integration of different specifications

- Analysis, retrieval and repair of derived properties
- Reuse of proofs
- Transfer of informal knowledge

=Translation of proof work in common
development
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Consistency of (Distributed) Developments -

- Development as a collection of various (types of)
documents

- By ,consistency” we mean
- Preserving syntactical correctness

- Preserving the static semantics
- Preserving proofs (properties)
e.g.:

- Implementation satisfies requirement specification
- Specification ensures security requirements

- Dependencies in the documentation of the project
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Merging Distributed Developments ,

- CVS: conflict occurs iff the same text-line is
changed in both developments

- Using structured objects:
- Non-local effects of changes!
- General rule:

- Single-worker rule:
conflict occurs if a developer inserts or edits an
object that depends on a object changed or deleted
by another developer
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Decomposition of Semantic Conflicts , _

Containment defines structuring of objects

Decomposition rules to unfold
dependency of composed objects
into dependencies of subobjects:

e.g. B<D into(A<GC,...)

Instead demanding single-worker-rule
for B < D we demand single-worker-rule
for A< C, ...
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What is a Semantic Conflict ?

conflict occurs if a developer inserts or edits
an object that depends on a object changed
or deleted by another developer

= no randomly generated dependencies

are allowed (single-worker-rule): Dev
Brnerge < Dmerge iMplies Dev, Dev,
(B

(B

merge — B, A Dmerge = D, Y \/
Dev

merge — B, A Dmerge =D, )

merge
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Spec Nat = Spec List =
free type Nat ::= 0] succ(Nat) free type List ::= nil | cons(Nat, LIST)

Op: < : Nat, Nat — Boolean 3'3: sorted leTiSt — Boolean
Vx:nat 0 < succ(x) ... X,y:nat, z:List

sorted(cons(x, cons(y, 2))) - X <V ...

Op: plus : Nat — Nat Op: reverse : List — List
Vx:nat plus(0, x) = x ... reverse(nil) = nil ...
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f(a, g(b))

Change(g), add(s, 2, a) f(a! g(b))

change(d, add 3, < Change(i), add(s, 2, a) Change(f)"add(t’ 3, 9(0)
f(a, g(b, a
@, g(b,a)  f(a, g(b), ¢ f(a, g(b,a)  f(a, g(b), g(c))
Change(d, add(t\ / e(e) addls 2,9 Semantic clash: no merge possible!

f(a, g(b, a), ©)
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Formal methods can help !

Helps for a formal semantics for decomposing and
composing certifications

Formal semantics for individual ,certificates®

Support for a management of change
- proofs as formal representation of certificates
- effects of changes
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